Basic Notions of Geometry and Euclidean Geometry

نویسنده

  • Tetsuya Ozawa
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Analysis in curved spaces with Non-Euclidean Geometry

The ultimate goal of spatial information, both as part of technology and as science, is to answer questions and issues related to space, place, and location. Therefore, geometry is widely used for description, storage, and analysis. Undoubtedly, one of the most essential features of spatial information is geometric features, and one of the most obvious types of analysis is the geometric type an...

متن کامل

2 4 D ec 1 99 8 The hidden geometry of the quantum Euclidean space ∗

We briefly describe how to introduce the basic notions of noncommutative differential geometry on the 3-dim quantum space covariant under the quantum group of rotations SOq(3).

متن کامل

Differential Geometry

After the introduction of coordinates, it became possible to treat figures in plane and space by analytical methods, and calculus has been the main means for the study of curved figures. For example, one attaches the tangent line to a curve at each point. One sees how tangent lines change with points of the curve and gets an invariant called the curvature. C. F. Gauss, with whom differential ge...

متن کامل

Some Lemmas to Hopefully Enable Search Methods to Find Short and Human Readable Proofs for Incidence Theorems of Projective Geometry

Search methods provide short and human readable proofs, i.e. with few algebra, of most of the theorems of the Euclidean plane. They are less succesful and convincing for incidence theorems of projective geometry, which has received less attention up to now. This is due to the fact that basic notions, like angles and distances, which are relevant for Euclidean geometry, are no more relevant for ...

متن کامل

Tarski's system of geometry

This paper is an edited form of a letter written by the two authors (in the name of Tarski) to Wolfram Schwabhäuser around 1978. It contains extended remarks about Tarski’s system of foundations for Euclidean geometry, in particular its distinctive features, its historical evolution, the history of specific axioms, the questions of independence of axioms and primitive notions, and versions of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011